Tools

Tools extend agent capabilities by providing access to external functions, APIs, and services, enabling agents to interact with the real world.

See Also

For tool schema structure and API details, see Tools API Reference. For built-in tools list, see Built-in Tools Guide.

Overview

Tools in MARSYS are Python functions that agents can invoke to:

  • Access External Services: Web search, APIs, databases
  • Perform Calculations: Mathematical operations, data analysis
  • Control Systems: Browser automation, file operations
  • Process Data: Text extraction, format conversion
  • Interact with Environment: System commands, hardware control

The framework uses OpenAI-compatible function calling for seamless tool integration.

Creating Tools

Basic Tool Definition

Every tool needs:

  1. Type hints on all parameters
  2. Comprehensive docstring with Args and Returns
  3. Return type annotation
  4. Descriptive parameter names
def search_database(
query: str,
database: str = "products",
limit: int = 10,
filters: Optional[Dict[str, Any]] = None
) -> List[Dict[str, Any]]:
"""
Search database for matching records.
Args:
query: Search query string
database: Database to search (products, users, orders)
limit: Maximum number of results to return
filters: Additional filters as key-value pairs
Returns:
List of matching records with all fields
Raises:
ConnectionError: If database is unavailable
ValueError: If query is invalid
"""
# Implementation
results = perform_search(query, database, limit, filters)
return results

Automatic Schema Generation

The framework automatically generates OpenAI-compatible schemas:

from marsys.environment.utils import generate_openai_tool_schema
# Automatic schema generation from function
schema = generate_openai_tool_schema(search_database)
# Generated schema:
{
"type": "function",
"function": {
"name": "search_database",
"description": "Search database for matching records.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search query string"
},
"database": {
"type": "string",
"description": "Database to search (products, users, orders)",
"default": "products"
},
"limit": {
"type": "integer",
"description": "Maximum number of results to return",
"default": 10
},
"filters": {
"type": "object",
"description": "Additional filters as key-value pairs"
}
},
"required": ["query"]
}
}
}

Tool Registration

Agent-Specific Tools

from marsys.agents import Agent
from marsys.models import ModelConfig
agent = Agent(
model_config=ModelConfig(
type="api",
name="anthropic/claude-haiku-4.5",
provider="openrouter",
max_tokens=12000
),
name="DataAnalyst",
goal="Expert data analyst with database access",
instruction="You are a data analyst. Use your tools to search databases, analyze data, and export results.",
tools={ # Dict mapping names to functions
"db_search": search_database,
"analyze": analyze_data,
"export": export_results
}
)

Global Tool Registry

from marsys.environment.tools import AVAILABLE_TOOLS
# Register globally
AVAILABLE_TOOLS["search_database"] = search_database
AVAILABLE_TOOLS["analyze_data"] = analyze_data
# Discover tools by category
WEB_TOOLS = {
"search_web": search_web_func,
"fetch_url": fetch_url_func,
"scrape_page": scrape_page_func
}
DATA_TOOLS = {
"analyze_csv": analyze_csv_func,
"process_json": process_json_func,
"transform_data": transform_data_func
}
# Combine categories
AVAILABLE_TOOLS.update(WEB_TOOLS)
AVAILABLE_TOOLS.update(DATA_TOOLS)

Tool Patterns

Async Tools

For non-blocking operations:

import aiohttp
import asyncio
async def fetch_api_data(
endpoint: str,
params: Optional[Dict[str, str]] = None,
timeout: int = 30
) -> Dict[str, Any]:
"""
Fetch data from API endpoint asynchronously.
Args:
endpoint: API endpoint URL
params: Query parameters
timeout: Request timeout in seconds
Returns:
API response data
"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(
endpoint,
params=params,
timeout=aiohttp.ClientTimeout(total=timeout)
) as response:
data = await response.json()
return {
"status": response.status,
"data": data,
"headers": dict(response.headers)
}
except asyncio.TimeoutError:
return {"error": "Request timed out", "timeout": timeout}
except Exception as e:
return {"error": str(e)}

Stateful Tools

Tools that maintain state across calls:

class DatabaseConnection:
def __init__(self, connection_string: str):
self.connection = self._connect(connection_string)
self.query_cache = {}
async def query(
self,
sql: str,
params: Optional[tuple] = None,
use_cache: bool = False
) -> List[Dict]:
"""
Execute SQL query with optional caching.
Args:
sql: SQL query string
params: Query parameters for prepared statement
use_cache: Whether to use cached results
Returns:
Query results as list of dictionaries
"""
cache_key = f"{sql}:{params}"
if use_cache and cache_key in self.query_cache:
return self.query_cache[cache_key]
try:
cursor = await self.connection.execute(sql, params or ())
results = await cursor.fetchall()
if use_cache:
self.query_cache[cache_key] = results
return results
except Exception as e:
return [{"error": str(e)}]
# Create instance and extract tool
db = DatabaseConnection("postgresql://...")
query_tool = db.query # This method becomes the tool

Composite Tools

Tools that combine multiple operations:

async def research_topic(
topic: str,
depth: Literal["shallow", "medium", "deep"] = "medium",
include_sources: bool = True
) -> Dict[str, Any]:
"""
Comprehensive research on a topic from multiple sources.
Args:
topic: Topic to research
depth: Research depth level
include_sources: Whether to include source URLs
Returns:
Research summary with sources and key points
"""
# Determine number of sources based on depth
source_count = {"shallow": 3, "medium": 5, "deep": 10}[depth]
# Phase 1: Web search
search_results = await search_web(topic, max_results=source_count)
# Phase 2: Fetch and analyze content
contents = []
for result in search_results:
content = await fetch_url_content(result["url"])
contents.append({
"url": result["url"],
"title": result["title"],
"content": content
})
# Phase 3: Synthesize information
key_points = extract_key_points(contents)
summary = create_summary(key_points)
response = {
"topic": topic,
"summary": summary,
"key_points": key_points,
"source_count": len(contents)
}
if include_sources:
response["sources"] = [
{"title": c["title"], "url": c["url"]}
for c in contents
]
return response

Error-Handling Tools

Robust tools with proper error handling:

from functools import wraps
from typing import Callable
def safe_tool(func: Callable) -> Callable:
"""Decorator for safe tool execution."""
@wraps(func)
async def async_wrapper(*args, **kwargs):
try:
result = await func(*args, **kwargs)
return {"success": True, "result": result}
except ValueError as e:
return {"success": False, "error": f"Invalid input: {e}"}
except TimeoutError as e:
return {"success": False, "error": f"Operation timed out: {e}"}
except Exception as e:
return {"success": False, "error": f"Unexpected error: {e}"}
@wraps(func)
def sync_wrapper(*args, **kwargs):
try:
result = func(*args, **kwargs)
return {"success": True, "result": result}
except Exception as e:
return {"success": False, "error": str(e)}
if asyncio.iscoroutinefunction(func):
return async_wrapper
else:
return sync_wrapper
# Usage
@safe_tool
async def risky_operation(param: str) -> str:
"""Operation that might fail."""
if not param:
raise ValueError("Parameter cannot be empty")
# Risky operation here
return f"Processed: {param}"

Built-in Tools

MARSYS includes a comprehensive tool library:

Web Tools

async def search_web(
query: str,
max_results: int = 5,
search_engine: Literal["google", "bing", "duckduckgo"] = "google"
) -> List[Dict[str, str]]:
"""Search the web for information."""
# Returns: [{"title": "...", "url": "...", "snippet": "..."}]
async def fetch_url_content(
url: str,
format: Literal["text", "markdown", "html"] = "text"
) -> str:
"""Fetch and extract content from URL."""
# Returns formatted content
async def check_website_status(url: str) -> Dict[str, Any]:
"""Check if website is accessible."""
# Returns: {"online": bool, "status_code": int, "response_time": float}

Data Processing Tools

def analyze_data(
data: List[float],
operations: List[Literal["mean", "median", "std", "min", "max"]]
) -> Dict[str, float]:
"""Perform statistical analysis on data."""
# Returns: {"mean": 5.2, "std": 1.3, ...}
def transform_json(
json_data: Dict,
jq_filter: str
) -> Any:
"""Transform JSON using JQ-like syntax."""
# Returns transformed data
def parse_csv(
csv_text: str,
delimiter: str = ",",
has_headers: bool = True
) -> List[Dict[str, str]]:
"""Parse CSV text into records."""
# Returns list of dictionaries

File System Tools

async def read_file(
path: str,
encoding: str = "utf-8",
lines: Optional[Tuple[int, int]] = None
) -> str:
"""Read file contents."""
# Returns file content
async def write_file(
path: str,
content: str,
mode: Literal["write", "append"] = "write"
) -> Dict[str, Any]:
"""Write content to file."""
# Returns: {"success": bool, "bytes_written": int}
async def list_directory(
path: str = ".",
pattern: Optional[str] = None
) -> List[Dict[str, Any]]:
"""List directory contents."""
# Returns: [{"name": "...", "type": "file|dir", "size": int}]

PDF Tools with Image Extraction

MARSYS supports extracting embedded images from PDFs using PyMuPDF, returning content as ordered chunks that preserve reading order.

Basic PDF Reading

# Text-only extraction (default)
async def read_pdf_text(path: str) -> ToolResponse:
from marsys.environment.file_operations import read_file_wrapper
result = await read_file_wrapper(
path="document.pdf",
start_page=1,
end_page=5
)
return result
# Returns: ToolResponse with text content only

PDF with Image Extraction

# Extract text + images in reading order
async def read_pdf_with_images(path: str) -> ToolResponse:
from marsys.environment.file_operations import read_file_wrapper
result = await read_file_wrapper(
path="paper.pdf",
start_page=5,
end_page=10,
extract_images=True, # Enable image extraction
max_images_per_page=10,
max_pixels=None # Optional: downsample large images
)
return result
# Returns: ToolResponse with ordered text/image content blocks

What Gets Extracted

When extract_images=True:

  • Text blocks: Paragraphs, headings, captions
  • Embedded images: Figures, photos, diagrams, charts
  • Reading order: Content sorted by Y-position (top-to-bottom) then X-position
  • Metadata: Page numbers, bounding boxes, token estimates

What does NOT get extracted:

  • Background images or watermarks (usually)
  • Text rendered as images (use OCR separately)
  • Vector graphics (converted to raster if possible)

Token Cost Comparison

Extraction MethodText TokensVision TokensCost (GPT-4o)
Text-only~5,0000$0.05
Images as base64 strings~255,0000$2.55
Images with ToolResponse~5,000~425$0.055

Savings: ~46x cheaper when using proper image extraction vs treating images as text!

Requirements

Dependencies:

# Install with file operations support
pip install marsys[file-ops]
# Or manually
pip install PyMuPDF>=1.23.0

Graceful Degradation:

  • If PyMuPDF not installed: PDF support will be disabled
  • Warning logged: "PyMuPDF not installed. PDF support will be disabled."

Best Practices

1. Clear Documentation

# GOOD - Comprehensive documentation
def process_invoice(
invoice_data: Dict[str, Any],
validation_level: Literal["basic", "strict"] = "basic",
currency: str = "USD"
) -> Dict[str, Any]:
"""
Process and validate invoice data.
Args:
invoice_data: Invoice information containing:
- invoice_number (str): Unique invoice identifier
- amount (float): Total amount
- items (list): Line items
validation_level: How strictly to validate
currency: Currency code for amount conversion
Returns:
Processed invoice with:
- status: "valid" or "invalid"
- processed_amount: Converted amount
- warnings: List of validation warnings
Raises:
ValueError: If invoice_data is malformed
KeyError: If required fields are missing
"""
# Implementation
pass
# BAD - Poor documentation
def process(data, level="basic"):
"""Process data."""
pass

2. Input Validation

# GOOD - Validates inputs
def send_email(
to: str,
subject: str,
body: str,
cc: Optional[List[str]] = None
) -> Dict[str, Any]:
"""Send email with validation."""
# Validate email format
email_pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
if not re.match(email_pattern, to):
raise ValueError(f"Invalid email address: {to}")
# Validate CC addresses
if cc:
for addr in cc:
if not re.match(email_pattern, addr):
raise ValueError(f"Invalid CC address: {addr}")
# Validate content
if not subject.strip():
raise ValueError("Subject cannot be empty")
if len(body) > 100000:
raise ValueError("Body too large (max 100KB)")
# Send email
return {"sent": True, "message_id": "..."}

3. Consistent Returns

# GOOD - Always returns same structure
def database_query(sql: str) -> Dict[str, Any]:
"""Query database with consistent response."""
try:
results = execute_query(sql)
return {
"success": True,
"data": results,
"row_count": len(results),
"error": None
}
except Exception as e:
return {
"success": False,
"data": [],
"row_count": 0,
"error": str(e)
}
# BAD - Inconsistent returns
def bad_query(sql: str):
try:
return execute_query(sql) # Returns list
except Exception as e:
return str(e) # Returns string

4. Resource Management

# GOOD - Proper resource cleanup
async def process_large_file(
file_path: str,
chunk_size: int = 8192
) -> Dict[str, Any]:
"""Process large file with proper resource management."""
file_handle = None
try:
file_handle = await aiofiles.open(file_path, 'r')
total_lines = 0
async for chunk in file_handle:
# Process chunk
total_lines += chunk.count('\n')
return {"lines": total_lines, "status": "completed"}
except Exception as e:
return {"error": str(e), "status": "failed"}
finally:
if file_handle:
await file_handle.close()

Advanced Patterns

Complex Tool Returns with ToolResponse

Important: Understanding Tool Return Types

What happens when you DON'T use ToolResponse:

  • Dictionaries - Converted to JSON strings. The LLM sees: '{"key": "value"}' instead of structured data
  • Images (paths/URLs) - Converted to strings. The LLM sees: '...' as TEXT (not as an image!). This wastes thousands of tokens treating image data as text
  • Lists - Converted to string representations. The LLM sees: '[1, 2, 3]' instead of structured data

Solution: Use ToolResponse for complex returns!

When to Use ToolResponse

Use ToolResponse when your tool needs to return:

  • Structured data (dicts, lists) that shouldn't be stringified
  • Images that the LLM should actually SEE (not read as text)
  • Multimodal content (text + images together)
  • Metadata separate from main content

Basic Usage

from marsys.environment import ToolResponse
def analyze_document(file_path: str) -> ToolResponse:
"""
Analyze a document and return structured results with images.
Returns:
ToolResponse with analysis data and document images
"""
# Process the document
analysis = {
"word_count": 1523,
"topics": ["AI", "Machine Learning", "Neural Networks"],
"sentiment": "positive",
"key_findings": [...]
}
# Extract images (as base64 data URLs)
images = extract_images_as_base64(file_path)
return ToolResponse(
content=analysis, # Dict stays as dict (NOT stringified!)
metadata="Successfully analyzed 5-page technical document",
images=images # LLM will SEE these images
)

Token Efficiency

Content TypeWithout ToolResponseContentWith ToolResponseContent
Small dict~25 tokens (stringified)~25 tokens (structured)
Image (50KB)~75,000 text tokens~85 vision tokens
PDF 5 pages~250,000 text tokens~425 vision tokens

Savings: Up to 750x cheaper for images!

Critical: Image Token Cost

Returning base64 images WITHOUT ToolResponse can cost hundreds of times more in API usage. Always use ToolResponse for images!

Rate-Limited Tools

from asyncio import Semaphore
from collections import defaultdict
import time
class RateLimiter:
def __init__(self, calls: int, period: float):
self.calls = calls
self.period = period
self.semaphore = Semaphore(calls)
self.call_times = []
async def acquire(self):
async with self.semaphore:
now = time.time()
# Remove old calls outside the period
self.call_times = [t for t in self.call_times if now - t < self.period]
if len(self.call_times) >= self.calls:
sleep_time = self.period - (now - self.call_times[0])
await asyncio.sleep(sleep_time)
self.call_times.append(time.time())
# Rate-limited API tool
rate_limiter = RateLimiter(calls=10, period=60) # 10 calls per minute
async def api_call(endpoint: str, params: Dict) -> Dict:
"""Rate-limited API call."""
await rate_limiter.acquire()
# Make actual API call
response = await make_request(endpoint, params)
return response

Cached Tools

from functools import lru_cache
import hashlib
import json
class CachedTool:
def __init__(self, ttl: int = 300):
self.cache = {}
self.ttl = ttl
def _cache_key(self, *args, **kwargs):
"""Generate cache key from arguments."""
key_data = json.dumps({"args": args, "kwargs": kwargs}, sort_keys=True)
return hashlib.md5(key_data.encode()).hexdigest()
async def expensive_operation(
self,
param1: str,
param2: int,
use_cache: bool = True
) -> Dict:
"""Expensive operation with caching."""
cache_key = self._cache_key(param1, param2)
# Check cache
if use_cache and cache_key in self.cache:
cached_time, cached_result = self.cache[cache_key]
if time.time() - cached_time < self.ttl:
return {"result": cached_result, "cached": True}
# Perform expensive operation
result = await self._do_expensive_work(param1, param2)
# Cache result
self.cache[cache_key] = (time.time(), result)
return {"result": result, "cached": False}

Next Steps

Tool System Ready!

You now understand how to create and use tools in MARSYS. Tools are the bridge between AI intelligence and real-world actions.